Curso de postgrado: Arqueometría aplicada al estudio de naufragios: fundamentos teórico‐metodológicos y líneas de investigación

  • OBJETIVOS DEL CURSO  El estudio de materiales arqueológicos se ha beneficiado ampliamente de los conocimientos, métodos e instrumental de análisis brindados por las ciencias naturales y exactas aplicadas. Ello permitió contar con medios sistemáticos para recolectar, analizar e interpretar información desde diferentes ángulos, y así ampliar y profundizar el conocimiento de ciertas temáticas del pasado humano. Dentro de este contexto, hacia la década de 1960 se constituyó la arqueometría. Desde entonces, los temas y materiales analizados se han expandido considerablemente, y se mejoraron los métodos e instrumental analíticos. En el caso de los naufragios, las aplicaciones arqueométricas abarcan la prospección y el registro de pecios, la identificación de artefactos, la determinación de los materiales y métodos de fabricación, la adscripción temporal y espacial de los objetos, el estudio de los procesos de formación de sitio y los tratamientos conservación.

     

    El objetivo principal del seminario es introducir a arqueólogos y especialistas afines (e.g. conservadores, historiadores, gestores del patrimonio) en los fundamentos teórico-metodológicos de la arqueometría, con foco en el estudio de naufragios, en aras de promover la formación de recursos humanos capaces de contribuir con la labor que se desarrolla actualmente en el país.

  • Fechas: del 15 al 18 de octubre de 2018 en horario de mañana.

LUGAR DE IMPARTICIÓN: Facultad de Filosofía y Letras de la UCA

PRECIO: 13.68€ (Doctorandos UCA)

NÚMERO MÁXIMO DE ALUMNOS PERMITIDOS:30 

PROFESOR(ES) RESPONSABLE(S):

Nicolás C. Ciarlo (CONICET-UBA)

Manuel Bethencourt Núñez (UCA)

 PROFESORADO (UCA y externo, indicando en todos los casos la filiación -cargo e Institución- y el nº de horas a impartir):

  • Manuel Bethencourt Núñez (Catedrático de Universidad, Universidad de Cádiz): 2 hs
  • Milagros Buendía Ortuño (Museo Nacional de Arqueología Subacuática – ARQUA, Cartagena): 3 hs
  • Felipe Cerezo Andreo (Investigador Doctor, Universidad de Cádiz): 4 hs
  • Nicolás C. Ciarlo (Investigador del CONICET y Docente de la Universidad de Buenos Aires, Argentina): 7 hs
  • Salvador Domínguez-Bella (Catedrático de Universidad, Universidad de Cádiz): 3 hs
  • Oriol López Bultó (Universidad Autónoma de Barcelona): 3 hs
  • Tomás Fernández Montblanc (Investigador de la Universidad de Ferrara, Italia): 3 hs

 

PROGRAMA DEL CURSO (contenidos por bloques, especificando el nº aproximado de horas de cada uno)

 

BLOQUES Teoría
1.    LA ARQUEOMETRÍA: FUNDAMENTOS Y DEVENIR DE LA ESPECIALIDAD 2hs
1.1     Multidisciplina e interdisciplina: marco epistémico y práctica científica

1.2     Breve historia de la arqueometría

1.3     Caracterización de materiales: consideraciones introductorias

a.         El dilema del muestreo de artefactos: hacia una solución de compromiso

b.         Métodos de análisis destructivos y poco invasivos

c.          Técnicas e instrumental disponibles: apreciaciones generales sobre su empleo

d.         Naturaleza de los datos e interpretación: representatividad y escalas de análisis (estudios comparativos)

e.         Integración con otras fuentes de evidencia: marcos de referencia y analogía histórica

1.4     Reseña de los campos de aplicación en arqueología marítima y náutica

a.         Prospección subacuática

b.         Relevamiento y registro

c.          Datación

d.         Procedencia

e.         Estudios morfométrico-funcionales

f.           Análisis tecnológicos

 

2hs
2.    TÉCNICAS DIGITALES DE REGISTRO Y ANÁLISIS ESPACIAL DE SITIOS SUMERGIDOS 4hs
2.1     La fotogrametría como método de registro de estructuras y artefactos

a.         Fundamentos técnicos

b.         Creación de modelos 3D

c.          Aplicaciones en investigación y divulgación

2.2     Arqueología virtual aplicada al estudio de sitios y la arqueología náutica

a.         Levantamiento de datos

b.         Hipótesis de reconstrucción

c.          Modelos de prueba y análisis hidrodinámicos

2.3     Análisis espacial marítimo mediante técnicas de SIG

a.         Introducción a la arqueología espacial y del paisaje

b.         El paisaje cultural marítimo

c.          SIG para el registro y el análisis de sitio

d.         SIG para el análisis del paisaje marítimo y portuario

 

4hs
3.    ESTUDIOS ANATÓMICOS DE MADERAS Y DENDROCRONOLOGÍA 3hs
3.1   La madera arqueológica

a.       Introducción

b.       Conservación de la madera en contextos arqueológicos

c.       Anatomía de la madera

i.      Conceptos generales

ii.      Características anatómicas de las gimnospermas

iii.      Características anatómicas de las angiospermas

d.       Preparación de muestras

i.      Recuperación de materiales y muestreo

ii.      Preparación de muestras de madera

e.       Análisis anatómico de la madera (dendrología)

i.      Taxonomía

ii.      Alteraciones naturales

iii.      Alteraciones antrópicas

iv.      Cronología (dendrocronología)

3.2   Arqueología de la madera

a.       Paleoecología

b.       Procesos de obtención de la madera

c.       Procesos de elaboración o transformación de la madera

d.       Procesos de uso o consumo de la madera

 

3hs
4.    APLICACIONES ARQUEOMETALÚRGICAS AL ESTUDIO DE NAUFRAGIOS 5hs
4.1     Introducción al uso de los metales en la tecnología naval

a.         Cascos de madera, mixtos y de hierro|acero

b.         Equipamiento náutico: anclas, bombas de achique y elementos de maniobra

c.          Artillería

d.         Otros objetos llevados a bordo: cargamento, pertenencias personales, etc.

4.2     Primera aproximación: estudios tipológicos

a.         Herramientas de relevamiento y registro

b.         Rasgos diagnósticos y bases de referencia

c.          Investigación de naufragios y reexamen de colecciones

4.3     Métodos y técnicas de caracterización de materiales

a.         Metalografía: principios y procedimientos básicos

b.         Microscopia óptica y electrónica de barrido

c.          Análisis de determinación de composición química (EDS, XRF, OES, AAS, etc.)

d.         Análisis de isótopos

e.         Otros ensayos: radiografía, dureza, etc.

4.4     Líneas de investigación arqueométrica y casos de estudio

a.         Identificación funcional

b.         Procesos de manufactura

c.          Calidad de los materiales

d.         Adscripción temporal y espacial

e.         Cambios tecnológicos

 

5hs
5.    ANÁLISIS DE MATERIALES CERÁMICOS Y PÉTREOS 3 hs
5.1   Caracterización arqueométrica de rocas y minerales. Aplicaciones a los materiales arqueológicos de pecios y yacimientos sumergidos

5.2   Caracterización arqueométrica de materiales cerámicos

a.         Preparación de muestras

b.         Principales técnicas arqueométricas de análisis

5.3   Casos de aplicación: el estudio de los lastres de piedra en la Bahía de Cádiz

 

3 hs
6.    INVESTIGACIÓN Y CONSERVACIÓN DE RESTOS ORGÁNICOS: HUESOS Y TEXTILES 3hs
6.1     Breve introducción sobre Normativa del Patrimonio Cultural Subacuático, en materia de conservación

6.2     El Museo Nacional de Arqueología Subacuática, breve historia

6.3     Fenicios en el mediterráneo

a.         El yacimiento del Bajo de la Campana y el cargamento del pecio fenicio

6.4     El marfil, caracterización del marfil de procedencia subacuática

a.         Técnicas analíticas

6.5     Conservación del marfil de procedencia subacuática, proyecto de investigación

a.                   Plastinación

6.6     Líneas de investigación abiertas

a.         Nuevos procedimientos de conservación

b.         Estudio de la bioerosión

c.          Estudio ADN

d.         Documentación 3D

e.         Difusión

 

3 hs
7.    ANÁLISIS Y MODELADO DE LOS PROCESOS DE FORMACIÓN DE SITIO 5hs
7.1     Procesos naturales y antrópicos

a.                   Dinámica de alteración antes, durante y luego del naufragio

b.                   Modelos interpretativos clásicos

7.2     Registro de variables del medio ambiente

a.                   Salinidad/conductividad

b.                   Oxígeno

c.                   pH

d.                   Potencial redox

e.                   Corrientes

f.                    Profundidad

g.                   Temperatura

h.         Sedimentos: granulometría y otras variables físico-químicas

i.           Flora y fauna

7.3     Integración de la información con datos históricos

7.4     Modelado por medio de herramientas matemáticas

a.                   Reconstrucción del proceso de naufragio

b.                   Potencial heurístico para la localización de sitios

7.5     Proyecto Arqueomonitor

 

5hs
TOTAL 25 hs

 

 EVALUACIÓN

 

A fin de cumplir con la regularidad, los estudiantes deberán contar con una asistencia mínima del 80% de la cursada. Junto al mérito de la participación durante las clases, la evaluación del curso se materializará a través de un cuestionario final sobre los contenidos de los bloques del seminario.

 

BIBLIOGRAFÍA

 

La siguiente bibliografía, junto con una selección de artículos relacionados con las áreas de especialización del curso, será brindada a los alumnos del curso a través del Campus Virtual de la Universidad de Cádiz:

 

BLOQQUE 1

  • VV., 2011. Appendix: Scientific Analyses and Dating Techniques. En: A. Catsambis, B. Ford y D. L. Hamilton (eds.), The Oxford Handbook of Maritime Archaeology, pp. 1151-1153. Oxford University Press, Nueva York, EE.UU.
  • ADAMS, J., 2001. Ships and boats as archaeological source material. World Archaeology 32 (3):292-310.
  • Catsambis, A., B. Ford y D. L. Hamilton, Preface. En: A. Catsambis, B. Ford y D. L. Hamilton (eds.), The Oxford Handbook of Maritime Archaeology, pp. xiii-xvii. Oxford University Press, Nueva York, EE.UU.
  • CIARLO, N. C., 2018. Historical Shipwrecks, Archaeometry of. En: C. Smith (ed.), Encyclopedia of Global Archaeology. 2da. Ed. Springer, Nueva York. Ms.
  • JONES, A., 2004. Archaeometry and Materiality: Materials-Based Analysis in Theory and Practice. Archaeometry 46 (3):327-338.
  • POLLARD, A. M. y P. BRAY, 2007. A Bicycle Made for Two? The Integration of Scientific Techniques into Archaeological Interpretation. Annual Review of Anthropology 36:245-259.
  • REHREN, T., 2002. Object Integrity: or Why Do We Excavate? Papers from the Institute of Archaeology 13:9-12.
  • REHREN, T. y E. PERNICKA, 2008. Coins, Artefacts and Isotopes – Archaeometallurgy and Archaeometry. Archaeometry 50:232-248.
  • SZOSTAK, R., 2013. The State of the Field: Interdisciplinary Research. Issues in Interdisciplinary Studies 31:44-65.
  • VIDUKA, A. J., 2012. Material Culture Analysis. En: M. R. Manders y Ch. J. Underwood (eds.), Training Manual for the UNESCO Foundation Course on the Protection and Management of Underwater Cultural Heritage in Asia and the Pacific, Unidad 15, pp. 1-25. Asia and Pacific Regional Bureau for Education, Bangkok, Thailand.

 

BLOQQUE 2

  • Balletti, C., C. Beltrame, E. Costa, F. Guerra y P. Vernier, 2016. 3D reconstruction of marble shipwreck cargoes based on underwater multi‐image photogrammetry. Digital Applications in Archaeology and Cultural Heritage 3(1):1‐8.
  • BOJAKOWSKI, P., K. CUSTER BOJAKOWSKI y P. NAUGHTON, 2015. A Comparison Between Structure from Motion and Direct Survey Methodologies on the Warwick. Journal of Maritime Archaeology 10: 159-180.
  • Cerezo-Andreo, F., 2016 Los puertos antiguos de Cartagena. Geoarqueología, Arqueología Portuaria y Paisaje Marítimo. Un estudio desde la Arqueología Náutica. Tesis doctoral no publicada, Universidad de Murcia, Murcia.
  • Demesticha, S., D. Skarlatos y A. Neophyto, 2014. The 4th‐century B.C. Shipwreck at Mazotos, Cyprus: New techniques and methodologies in the 3D mapping of shipwreck excavations. Journal of Field Archaeology 39(2):134‐150.
  • DRAP, P., 2012. Underwater Photogrammetry for Archaeology. En: D. Carneiro Da Silva (ed.), Special Applications of Photogrammetry, pp. 111‐136. In Tech Publisher, Rijeka, Croacia. doi: 10.5772/33999
  • Indruszewski, G., G. Farin, A. Razdan, A. Simon, D. Van Alfen y J. Rowe, 2004. Application of 3D Modeling in Ship Reconstruction and Analysis: Tools and Techniques. En: M. der Stadt Wien, R. K. Erbe y S. Wien (eds.), [Enter the Past] The E-way into the Four Dimensions of Cultural Heritage (Computer Applications and Quantitative Methods in Archaeology International Conference, Vienna 2003), pp. 82-85. Archaeopress, Oxford, Reino Unido.
  • Leidwanger, J., 2013. Modeling distance with time in ancient Mediterranean seafaring: A GIS application for the interpretation of maritime connectivity. Journal of Archaeological Science 40:3302-3308.
  • Miñano Domínguez, A. I., F. Fernández Matallana Y J. L. Casabán Banaclocha, 2013. Métodos de documentación arqueológica aplicados en arqueología subacuática: el modelo fotogramétrico y el fotomosaico del pecio fenicio Mazarrón-2 (Puerto de Mazarrón, Murcia). Saguntum 44:99-109.
  • MOYA, J. A., 2017. Fotografía y fotogrametría subacuática aplicadas al patrimonio cultural sumergido. Universidad de Alicante, Alicante.
  • Safadi, C., 2016. Wind and wave modelling for the evaluation of the maritime accessibility and protection afforded by ancient harbours. Journal of Archaeological Science: Reports 5:348-360.
  • Westerdahl, C. 2011. The Maritime Cultural Landscape. En: A. Catsambis, B. Ford y D. L. Hamilton (eds.), The Oxford Handbook of Maritime Archaeology, pp. 733-763. Oxford University Press, Nueva York, EE.UU.

 

BLOQQUE 3

  • BUXÓ, R. y R. PIQUÉ, 2008. Arqueobotánica. Los usos de las plantas en la península Ibérica. Ariel, Barcelona.
  • CRESPO-SOLANA, A. y N. NAYLING, 2016. Forest resources for Iberian Empires: Ecology and Globalization in the Age of Discovery (16th-18th centuries). En: I. Negueruela Martínez, R. Castillo Belinchón y P. Recio Sánchez (coord.), A heritage for mankind (Actas del 5th International Congress on Underwater Archaeology), pp. 896-904. Ministerio de Educación, Cultura y Deporte, Cartagena.
  • GUTIÉRREZ MERINO, E., 2009. La dendrocronología: métodos y aplicaciones. En: X. Nieto y M. A. Cau (eds.), Arqueologia Nàutica Mediterrània, pp. 309-321. Monografies del CASC 8. Museu d’Arqueologia de Catalunya, Girona.
  • MUNDO, I. A., 2012. Desde la interdisciplina: Análisis dendrocronológico del pecio de ZenCity. ¿Qué nos dicen los anillos de crecimiento de sus maderas? En: M. Valentini y J. García Cano (eds.), Un mercante español en el Puerto de Buenos Aires, pp. 80-85. Dirección General de Patrimonio, Buenos Aires.
  • NASH, S. E., 2002. Archaeological Tree-Ring Dating at the Millennium. Journal of Archaeological Research 10 (3):243-275.
  • RIVAL, M., 1991. La charpenterie navale romaine. Editions du CNRS, Paris.
  • SANDS, R., 1997. Prehistoric Woodworking: The Analysis and Interpretation of Bronze and Iron Age Toolmarks. Institute of Archaeology, University College London, Londres.
  • SCHOCH, W., I. HELLER, F. H. SCHWEINGRUBER y F. KIENAST, 2004. Wood anatomy of central European Species. Versión disponible en línea: woodanatomy.ch
  • SCHWEINGRUBER, F. H., 1987. Tree Rings: Basics and Applications of Dendrochronology. Reidel Publishing Co., Dordrech, Países Bajos.
  • ULRICH, R. B., 2007. Roman Woodworking. Yale University Press, Londres.

 

BLOQQUE 4

  • BIRCH, T., M. F. CHARLTON, L. BIGGS, Z. A. STOS-GALE y M. MARTINÓN-TORRES, 2014. The Cargo. En: G. Milne y D. Sully (eds.), The Gresham Ship Project: A 16th-Century Merchantman Wrecked in the Princes Channel, Thames Estuary, Vol. 2 (Contents and Context), pp. 53-69. British Archaeological Reports, British series 606. Archeopress, Oxford, Reino Unido.
  • CIARLO, N. C. y A. ARGÜESO, 2018. Archaeometric and Archaeometallurgical Studies on Historical Shipwrecks: Research Experiences in Argentina. Journal of Maritime Archaeology (en línea). doi: 10.1007/s11457-018-9203-5
  • CIARLO, N. C., H. DE ROSA, M. C. LUCCHETTA, P. MARINO, N. RODRÍGUEZ MARISCAL, J. MARTÍ SOLANO y G. MAXIA, 2014. Estudio comparado de dos navíos franceses de la Batalla de Trafalgar: los elementos de fijación estructurales del Fougueux (1785-1805) y Bucentaure (1804-1805). En: D. Juanes Barber y C. Roldán García (coord.), Actas del X Congreso Ibérico de Arqueometría, pp. 217-229. Subdirección de Conservación, Restauración e Investigación IVC+R de CulturArts Generalitat, Castellón.
  • CIARLO, N. C., G. MAXIA, M. RAÑI, H. DE ROSA, R. GELI MAURI y G. VIVAR LOMBARTE, 2016. Craft production of large quantities of metal artifacts at the beginnings of industrialization: Application of SEM-EDS and multivariate analysis on sheathing tacks from a British transport sunk in 1813. Journal of Archaeological Sciences: Reports 5:263-275.
  • COHEN, M., D. ASHKENAZI, Y. KAHANOV, A. STERN, S. KLEIN y D. CVIKEL, 2015. The Brass Nails of the Akko Tower Wreck (Israel): Archaeometallurgical Analyses. Metallography, Microstructure, and Analysis 4:188-206.
  • Kahanov, Y. y D. Ashkenazi, 2011. Lead sheathing of ship hulls in the Roman period: Archaeometallurgical characterization. Materials Characterization 62 (8):768-774.
  • REHREN, T. y E. PERNICKA, 2008. Coins, Artefacts and Isotopes – Archaeometallurgy and Archaeometry. Archaeometry 50:232-248.
  • SAMUELS, L. E., 1992. Australia’s Contribution to Archaeometallurgy. Materials Characterization 29:69-109.
  • VIDUKA, A. y S. NESS, 2004. Analysis of some copper-alloy items from HMAV Bounty wrecked at Pitcairn Island in 1790. Proceedings of Metal, pp. 160-172. National Museum of Australia, Canberra, Australia.
  • WAYMAN, M. L., 2004. Metallography of Archaeological Alloys. En: G. F. Vander Voort (ed.), ASM Handbook, Vol. 9 (Metallography and Microstructures), pp. 468-477. ASM International, EE.UU.

 

BLOQQUE 5

 

  • Antonelli, F. y L. Lazzarini, 2010. Mediterranean trade of the most widespread Roman volcanic millstones from Italy and petrochemical markers of their raw materials. Journal of Archaeological Science 37 (9):2081-2092.
  • Chen, Y., W. Luo, N. Li y C. Wang, 2016. A study on provenance of marine porcelains from Huaguangjiao No. 1 after sample desalination. Journal of Archaeological Science: Reports 5:547-556.
  • GARRISON, E., 2016. Petrography for Archaeological Geology. Techniques in Archaeological Geology, pp. 145-178. Natural Science in Archaeology. Springer, Cham, Alemania.
  • Niziolek, L. C., 2018. Portable X-ray fluorescence analysis of ceramic covered boxes from the 12th/13th-century Java Sea Shipwreck: A preliminary investigation. Journal of Archaeological Science: Reports 21:679-701.
  • Orton, C. y M. Hughes, 2013. Pottery in archaeology. Cambridge University Press, Cambridge, Reino Unido.
  • PECCHIONI, E., E. CANTISANI, P. PALLECCHI, F. FRATINI, A. BUCCIANTI, E. PANDELI, S. RESCIC y S. CONTICELLI, Characterization of the amphorae, stone ballast and stowage materials of the ships from the archaeological site of Pisa-San Rossore, Italy: Inferences on their provenance and possible trading routes. Archaeometry 49 (1):1-22.
  • Schleichera, L. S., J. W. Miller, S. C. Watkins-Kenney, L. F. Carnes-McNaughton, M. U. Wilde-Ramsing, 2008. Non-destructive chemical characterization of ceramic sherds from Shipwreck 31CR314 and Brunswick Town, North Carolina. Journal of Archaeological Science 35 (10):2824-2838.
  • Ueda, K., J. N. Miksic, S. C. Wibisono, N. Harkantiningsih, G. Y. Goh, E. E. McKinnon, A. M. Z. Shah, 2017. Trade and consumption of fine paste ware in Southeast Asia: Petrographic and portable X-ray fluorescence analyses of ninth- to fourteenth-century earthenware. Archaeological Research in Asia 11:58-68.
  • QUINN, Patrick Sean, 2013. Ceramic Petrography: The Interpretation of Archaeological Pottery Related Artefacts in Thin Section. Archaeopress, Oxford, Reino Unido.
  • Zhou, Y., Y. Hu, Y. Tao, J. Sun, Y. Cui, K. Wang y D. Hu, 2016. Study on the microstructure of the multilayer glaze of the 16th-17th century export blue-and-white porcelain excavated from Nan’ao-I Shipwreck. Ceramics International 42 (15):17456-17465.

 

BLOQQUE 6

 

  • Albéric, M., Gourrier, A., Müller, K., Zizak, I., Wagermaier, W., Fratzl, P. y I. Reiche, 2014. Early diagenesis of elephant tusk in marine environment. Paleogeography, Paleoclimatology, Paleoecology 416:120-132.
  • Buendía, M., 2016. La conservación del marfil de procedencia subacuática: las defensas de elefante del Bajo de la campana (San Javier, Murcia) del Museo Nacional de Arqueología Subacuática. Tesis doctoral inédita, Universidad Politécnica de Valencia, Valencia.
  • Buendía, M., R. LATORRE, O. LÓPEZ-ALBORS, 2017. Plastination Applied To The Conservation Of Cultural Heritage. The Journal of Plastination 29 (2):11-21.
  • Doménech-Carbó, T., M. Buendía-Ortuño y T. Pasíes-Oviedo, 2016. Analytical study of waterlogged ivory from the Bajo de la Campana site (Murcia, Spain). Microchemical Journal 126:381-405.
  • Espinoza, E. O. y M.-J. Mann, 1992. Identification Guide for Ivory and Ivory Substitutes. WWF Publications, Baltimore, EE.UU.
  • Godfrey, I. M., E. L. Ghisalberti, E. W. Beng, L. T. Byrne y G. W. Richardson, 2002. The Analysis of Ivory from a Marine Environment. Studies in Conservation 47 (1):29-45.
  • Godfrey, I., K. Kasi, S. Lussier y C. Wayne Smith, 2012. Conservation of waterlogged elephant tusks. En: K. Straetkvern y E. Williams (eds.), Proceedings of the 11th ICOM Working Group on Wet Organic Archaeological Materials Conference (2010), pp. 633-646. Greenville, EE.UU.
  • Locke, M., 2008. Structure of Ivory. Journal of Morphology 269:423-450.
  • Pearson, C., 1987. Conservation of Marine Archaeological Objects. Butterworths, Londres.
  • Pinedo Reyes, J. y M. Polzer, 2012. El yacimiento subacuático del Bajo de la Campana. Actas de las Jornadas de ARQUA (2011), pp. 90-95. Ministerio de Educación, Cultura y Deporte, Madrid.

 

BLOQQUE 7

  • BERGSTRAND T. e I. NYSTRÖM GODFREY, 2007. Reburial and analyses of archaeological remains. Studies on the effect of reburial on archaeological materials performed in Marstrand, Sweden 2002-2005. The RAAR Project. Kulturhistoriska dokumentationer no. 20. Bohusläns museums förlag, Uddevalla, Suecia.
  • CAMIDGE, K., 2009. HMS Colossus, an Experimental Site Stabilization. Conservation and Management of Archaeological Sites 11 (2): 161-188.
  • FERNÁNDEZ-MONTBLANC, T., L. DEL RÍO, A. IZQUIERDO, F. J. GRACIA, M. BETHENCOURT y J. BENAVENTE, 2018. Shipwrecks and man-made coastal structures as indicators of historical shoreline position. An interdisciplinary study in the Sancti Petri sand spit (Bay of Cádiz, SW Spain). Marine Geology 395:152-167.
  • FERNÁNDEZ-MONTBLANC, T., A. IZQUIERDO y M. BETHENCOURT, 2018. Scattered shipwreck site prospection: the combined use of numerical modelling and documentary research (Fougueux, 1805). Archaeological and Anthropological Science 10:141-156.
  • GONZÁLEZ-DUARTE, M. M., T. FERNÁNDEZ-MONTBLANC, M. BETHENCOURT y A. IZQUIERDO, 2017. Effects of substrata and environmental conditions on ecological succession on historic shipwrecks. Estuarine, Coastal and Shelf Science 200:301-310
  • MACLEOD, I. D., 2013. The Mechanism and Kinetics of In Situ Conservation of Iron Cannon on Shipwreck Sites. International Journal of Nautical Archaeology 42 (2):382-391.
  • MARTIN, C., 2011. Wreck-site formation processes. En: A. Catsambis, B. Ford y D. L. Hamilton (eds.), The Oxford Handbook of Maritime Archaeology, pp. 47-67. Oxford University Press, Nueva York, EE.UU.
  • O’SHEA, J. M., 2002. The archaeology of scattered wreck-sites: formation processes and shallow water archaeology in western Lake Huron. The International Journal of Nautical Archaeology 31(2):211-227.
  • PALMA, P., 2005, Monitoring of shipwreck sites. The International Journal of Nautical Archaeology 34:323-331.
  • POURNOU, A., A. M. JONES y S. T. MOSS, 2001. Biodeterioration dynamics of marine wreck-sites determine the need for their in situ protection. The International Journal of Nautical Archaeology 30 (2):299-305.

 IDIOMA EN EL QUE SE IMPARTIRÁ EL CURSO

 

Español

 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *